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The synchrotron introduces two new ideas:

change B, . & change w,

< For low energy 10ns, f,,,
increases as £, increases

% ==> Increase w,,to maintain

synchronism @E@ ]

< For any £, = circumference
must be an integral number
of rf wavelengths

L=hi,

% h 1s the harmonic number £ =1lr=viL

US PARTICLE ACCELERATOR SCHOOL



Ideal closed orbit in the synchrotron

< Beam particles will not have
1dentical orbital positions &
velocities

< In practice, they will have
transverse oscillatory
motion (betatron
oscillations) set by radial
restoring forces

L)

< An 1deal particle has zero
amplitude motion on a
closed orbit along the axis
of the synchrotron
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Ideal closed orbit & synchronous particle

< The 1deal synchronous
particle always passes
through the rf-cavity when
the field 1s at the same phase
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X

Synchrotron acceleration

The rf cavity maintains an electric field at w,=h w,,, = h 2nv/ L
Around the ring, describe the field as E(z,¢)=E,(z)E,(t)

E,(z) 1s periodic with a period of L

]wrfdt + (po)

E,(t)=E sin

t
The particle positionis  2(#) =z, + f v dt
tO

IE(Z)

-L -g/2 g/2
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Phasing in a linac

< In the linac we must control the rf-phase so that the
particle enters each section at the same phase.

Space for magnets, vacuum pumps and diagnostics

RFI RF2 RF3

L b L = L
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Energy gain

< The energy gain for a particle that moves from 0 to L 1s given by:

+g/2

W=q[E(zt)-dz=q [E()E,(dz=

-g/2

t
=qgkE,(t)=qE sin fa)rfdt +@, |=qV
tO
< V 1s the voltage gain for the particle.
» depends only on the particle trajectory
> includes contributions from all electric fields present
« (RF, space charge, interaction with the vacuum chamber, ...)

< Particles can experience energy variations U(F) that depend on energy
» synchrotron radiation emitted by a particle under acceleration

AE

Total

=qV +U(E)
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Energy gain -11

< The synchronism conditions for the synchronous particle
» condition on rf- frequency,

> relation between rf voltage & field ramp rate

< The rate of energy gain for the synchronous particle 1s

dE B p.c
dt L

eVsing, = hLeV sSInQ,
if

< Its rate of change of momentum 1s
dp, eV

=¢eFE singp =—sIin
dt o SHPs L Ps
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Beam rigidity links B, p and p

< Recall that p, = epB,

< Therefore, dB, Vsing,
it pL

< If the ramp rate 1s uniform then Vsing, = constant

< In rapid cycling machines like the Tevatron booster

B__-B_
B(t)=B_ +—= 5 o= (1 — cosZanyclet)

< Therefore V sin¢g, varies sinusoidally
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Phase stability
&

Longitudinal phase space
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Phase stability: Will bunch of finite length
stay together & be accelerated?

Let’s say that the synchronous particle
makes the i revolution in time: T,

Will particles close to the synchronous
particle in phase stay close in phase?

Discovered by MacMillan & by Veksler
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What do we mean by phase?
Let’s consider non-relativistic ions

A AE

_/

>
¢

0. How does the ellipse
change as B lags
further behind A?

US PARTICLE ACCELERATOR SCHOOL

From E. J. N. Wilson CAS lecture



How does the ellipse change as
B lags further behind A?

| | How does the size
RF-bucket 5 | of the bucket
\ change with ¢, ?
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This behavior can be though of as phase
or longitudinal focusing

< Stationary bucket: A special case obtains when ¢, =0

» The synchronous particle does not change energy

» All phases are trapped

< We can expect an equation of motion in ¢ of the form

d ch

2

; +Q’singp =0 Pendulum equation
)
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For ¢,=0 we have

We’ve seen this behavior for the pendulum

Now let’s return to the question of frequency
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Length of orbits in a bending magnet

_p =/3Ymoc

V4

L, = Trajectory length between A and B
L = Trajectory length between A and C

- Ap where ¢ 1S constant

For y>>1 =£=aApsaAE
L, Po L,

In the sector bending magnet L > Ly so that a > 0
Higher energy particles will leave the magnet later.
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Definition: Momentum compaction

AL _Ap
L p
AE/E > 0 Lo
o = s
o P

where dispersion, D, 1s the change in the
closed orbit as a function of energy

Momentum compaction, a, is the change in the
closed orbit length as a function of momentum.
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Phase stability: Basics

< Distance along the particle orbit between rf-stations is L

< Time between stations for a particle with velocity v 1s

T=LN
» e AT AL Av
T L v
< Note that
Av 1 Ap (Exercise)
vy p

< For circular machines, L can vary with p

< For linacs L 1s independent of p
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Phase stability: Slip factor & transition

Introduce y, such that

AL 1 Ap
L vy p
Define a slip factor
1 1
n= V—tz - 7

At some transition energy 1) changes sign

Now consider a particle with energy £, and phase y, w.r.t. the rf that
enters station » at time 7,

Station n Station n+1
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Equation of motion for particle phase
< The phase at station n+1 is

wn+1 = wn + a)rf (T + A’-':)n+1

L)

» By definition the synchronous particle stays in phase (mod 2m)

< Refine the phase mod 2n

¢n =wn _wrfY;z

* AT A
¢n+1 = ¢n + a)rftn+1(—) . ¢n + na)rfrnﬂ(_p)
T n+l p n+l

harmonic number = 2nN
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Equation of motion in energy

(E,) . =(E,) +eVsing,

Define AE=E -E,

and in general E ,,=E +eVsing,

—p

AE =AE +eV(sing —sing, )

. A > AE
Exercise: Show that = = Cz
p v E
Then
2
W . TNC
¢n+1 = ¢n + 2 17 Afzn+1

E v?

A)
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Longitudinal phase space of beam

AE/E

Solving the difference equations will show if there are areas of
stability in the (AE/E, @) longitudinal phase space of the beam

US PARTICLE ACCELERATOR SCHOOL



Phase stability, AE/E = 0.03, ¢ =,

Phase space tracking through 1000 turns in the accelerator
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Phase stability, AE/E = 0.05, ¢ =@,




Phase stability, AE/E = 0.1, ¢,=¢,
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Phase stability, AE/E = 0.2, ¢,=¢,
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Phase stability, AE/E = 0.3, ¢, =@,
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Phase stability, AE/E = 0.4, ¢,=¢,
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Phase stability, AE/E = 0.405, ¢,=¢.

Regions of stability and instability are sharply divided
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Phase stability, AE/E = 0.45, ¢ =@,




Phase stability, AE/E = 0.5, ¢ =@,
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Phase stability, AE/E = 0.55, ¢ =@,




Phase stability, AE/E = 0.6, ¢, =@,
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Physical picture of phase stability

Here we 've picked the case in which
we are above the transition energy

(typically the case for electrons)
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Consider this case for a proton accelerator

Transition crossing

1.66
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Case of favorable transition crossing
in an electron ring

Transition

Injection
\ Synchrotron

oscillations

i
i
|
2
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Frequency of synchrotron oscillations

/\ A /W o /\ ¢
\ A4 N4 \ 4

< Phase-energy oscillations mix particles longitudinally within

the beam
< What 1s the time scale over which this mixing takes place?

< If AE and ¢ change slowly, approximate difference equations

by differential equations with n as independent variable
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