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The synchrotron introduces two new ideas:
change Bdipole & change ωrf

 For low energy ions, frev

increases as Eion increases

 ==> Increase ωrf to maintain
synchronism

 For any Eion circumference
must be an integral number
of rf wavelengths

L = h λrf

 h is the harmonic number

R

L = 2πR

frev = 1/τ = v/L
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Ideal closed orbit in the synchrotron

 Beam particles will not have
identical orbital positions &
velocities

 In practice, they will have
transverse oscillatory
motion (betatron
oscillations) set by radial
restoring forces

 An ideal particle has zero
amplitude motion on a
closed orbit along the axis
of the synchrotron
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Ideal closed orbit & synchronous particle

 The ideal synchronous
particle always passes
through the rf-cavity when
the field is at the same phase
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Synchrotron acceleration

 The rf cavity maintains an electric field at ωrf =h ωrev = h 2πv/ L

 Around the ring, describe the field as  E(z,t)=E1(z)E2(t)

 E1(z) is periodic with a period of L

 The particle position is
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Phasing in a linac

 In the linac we must control the rf-phase so that the
particle enters each section at the same phase.

RF 1 RF 2 RF 3

Space for magnets, vacuum pumps and diagnostics

L LL
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Energy gain

  The energy gain for a particle that moves from 0 to L is given by:

 V  is the voltage gain for the particle.
 depends only on the particle trajectory
 includes contributions from all electric fields present

• (RF, space charge, interaction with the vacuum chamber, …)

 Particles can experience energy variations U(E) that depend on energy
 synchrotron radiation emitted by a particle under acceleration
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Energy gain -II

 The synchronism conditions for the synchronous particle
 condition on rf- frequency,
 relation between rf voltage & field ramp rate

 The rate of energy gain for the synchronous particle is

 Its rate of change of momentum is

! 

dEs

dt
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"sc

L
eV sin#s =
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L
sin"s



US Particle Accelerator School

Beam rigidity links B, p and ρ

 Recall that  ps = eρBo

 Therefore,

 If the ramp rate is uniform then Vsinφs = constant

 In rapid cycling machines like the Tevatron booster

 Therefore V sinφs varies sinusoidally
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dB
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Phase stability
&

Longitudinal phase space
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Phase stability: Will bunch of finite length
stay together & be accelerated?

Let’s say that the synchronous particle
makes the ith revolution in time: Ti

Will particles close to the synchronous
particle in phase stay close in phase?

Discovered by MacMillan & by Veksler

V
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What do we mean by phase?
Let’s consider non-relativistic ions

From E. J. N. Wilson CAS lecture

ΔΕ

φ

A
B

φs
How does the ellipse
change as B lags
further behind A?
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How does the ellipse change as
B lags further behind A?

RF-bucket

φs

How does the size
of the bucket
change with φs ?
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This behavior can be though of as phase
or longitudinal focusing

 Stationary bucket: A special case obtains when  φs = 0
 The synchronous particle does not change energy
 All phases are trapped

 We can expect an equation of motion in φ of the form

! 

d
2"

ds
2

+#2
sin" = 0 Pendulum equation
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Now let’s return to the question of frequency

We’ve seen this behavior for the pendulum 

For φσ = 0  we have
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Length of orbits in a bending magnet

In the sector bending magnet  L > L0 so that a > 0
Higher energy particles will leave the magnet later.
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Definition: Momentum compaction

6

Momentum compaction, α, is the change in the
closed orbit length as a function of momentum.
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Phase stability: Basics

 Distance along the particle orbit between rf-stations is L

 Time between stations for a particle with velocity v is
τ = L/v

 Then

 Note that

 For circular machines, L can vary with p

 For linacs L is independent of p
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Phase stability: Slip factor & transition

 Introduce γt such that

 Define a slip factor

 At some transition energy η changes sign

 Now consider a particle with energy En and phase ψn w.r.t. the rf that
enters station n at time Tn
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Equation of motion for particle phase

 The phase at station n+1 is

 By definition the synchronous particle stays in phase (mod 2π)
 Refine the phase mod 2π
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Equation of motion in energy

! 

E
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s( )
n

+ eV sin"
s

! 
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n
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Define   ΔE= E - Es
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Longitudinal phase space of beam

ΔE/E

φ

Solving the difference equations will show if there are areas of
stability in the (ΔE/E, φ) longitudinal phase space of the beam
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Phase stability, ΔE/E = 0.03, φn=φs

Phase space tracking through 1000 turns in the accelerator
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Phase stability, ΔE/E = 0.05, φn=φs
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Phase stability, ΔE/E = 0.1, φn=φs
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Phase stability, ΔE/E = 0.2, φn=φs
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Phase stability, ΔE/E = 0.3, φn=φs
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Phase stability, ΔE/E = 0.4, φn=φs
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Phase stability, ΔE/E = 0.405, φn=φs

Regions of stability and instability are sharply divided
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Phase stability, ΔE/E = 0.45, φn=φs
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Phase stability, ΔE/E = 0.5, φn=φs
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Phase stability, ΔE/E = 0.55, φn=φs
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Phase stability, ΔE/E = 0.6, φn=φs
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Physical picture of phase stability

E

φ

E

φ

E

φ

Here we’ve picked the case in which
we are above the transition energy

(typically the case for electrons)
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Consider this case for a proton accelerator

Transition crossing
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Case of favorable transition crossing
in an electron ring

Transition

Synchrotron 
oscillations

φs

Injection
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Frequency of synchrotron oscillations

 Phase-energy oscillations mix particles longitudinally within
the beam

 What is the time scale over which this mixing takes place?
 If ΔE and φ change slowly, approximate difference equations

by differential equations with n as independent variable
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